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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Approximate formulae for the superposition of coherent 
and chaotic fields 

R. H O a K ,  L. MISTAt  and J. PERINA 
Laboratory of Optics, Palackjr University, Olomouc, Czechoslovakia 
MS.  received 22nd June 1970, in revised form 25th August 1970 

Abstract. Recently derived formulae for the integrated intensity distribution, 
the photon-counting distribution and its factorial moments in the statistics of 
the superposition of coherent and chaotic multimode fields are proposed as 
approximate formulae for light of arbitrary spectrum. It  is shown by explicit 
calculations of the third factorial moment for the superposition of a one-mode 
coherent field with a Gaussian-Lorentzian field that the proposed formulae 
hold with good accuracy over a wide range of conditions. An application to the 
determination of spectral parameters of light is given. 

1. Introduction 
I n  1959 Mandel obtained a formula for the photon-counting distribution as a 

generalization of the Bose-Einstein distribution to systems with more than one degree 
of freedom. Later it was pointed out by BCdard et al. (1967) that Mandel’s formula 
can serve as an approximate formula for the photon-counting distribution of a chaotic 
field of arbitrary spectral density if a free parameter of the number of degrees of 
freedom is adjusted in such a way that the second moments of the number of counts 
for the exact formula and the approximate formula coincide. Of course, the exact 
formula cannot be obtained in a close form. They have shown by explicit calculations 
for three spectral profiles (Lorentzian, Gaussian and rectangular) that Mandel’s 
formula holds with very good accuracy over a wide range of conditions. 

The  purpose of the present paper is to show that the multimode formulae obtained 
by PePina and Horik (1969) (see also Pefina 1970,1971) for the superposition of coher- 
ent and chaotic fields can be used to obtain with good accuracy the integrated intensity 
distribution, the photon-counting distribution and its factorial moments for arbitrary 
spectral composition of light in the same way as Mandel’s formula has been used for 
chaotic light. The  validity of the approximate formulae is verified by calculating the 
third factorial moment of the photon-counting distribution according to the exact and 
approximate formulae for the Lorentzian spectrum. We assume a field produced as the 
superposition of a one-mode coherent field and a chaotic field with Lorentzian profile 
of the spectrum. 

I n  $ 2  the exact and approximate formulae for the factorial moments are compared 
and a procedure is given allowing one to obtain the number of degrees of freedom 
involved in the approximate formulae. I n  $ 3 a discussion of results is given; the 
use of the approximate formulae in the determination of the spectral parameters is 
discussed in particular. 

2. Comparison of exact and approximate expressions for moments 
The following expression can be obtained for the factorial moments ( W k )  
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(Pekina and Hordk 1969): 

where is the gamma function, Ly are the Laguerre polynomials, ( n c )  and (rich) 
are the mean photon occupation numbers in the coherent and chaotic fields respect- 
ively, M is the number of modes and x = sin( !2/2)/( Qj2) ; here Cl = ( wc - w,)T, 
where wc is the frequency of the coherent field, w o  is the mean frequency of the 
chaotic field and T is a time interval of detection. For K = 2 and 3 we obtain from (1) : 

where ( n )  = (nc)+ (nCh)  = ( W ) .  

in the form (Morawitz 1966, Mandel and Wolf 1966) 
The exact second moment can be obtained by the correlation function technique 

where Y C h  and yc are the degrees of coherence for the chaotic and coherent fields, 
respectively. For the third factorial moment the following exact expression has been 
obtained (Peiina and MiSta 1968): 

Considering these exact results for Lorentzian light, so that 

YCh(7) = exp{-(r j T 1  + iwOT)) (6) 

yC(7) = exp(-iwC7) (7) 

where I? is the halfwidth of the spectrum, and taking into account that 



Formulae fo r  the superposition of coherent and chaotic jields 233 

we obtain for the second factorial moment (Jakeman and Pike 1969) 

where 

2( Q2 - y2 )  2 exp( - y){(y2 - Q2) cos Q - 2yQ sin Q> 
x -  + 

( Q2 + y2)2 
( 2y + 

Q2 + y2 ( Q2 + y 2 ) 2  

and y = PT; for the third factorial moment, after rather complicated mathematics: 

2exp( -y) (y2 cos Q-yQsin  Q)-exp( -2y)(Q2+y2)+(Q2-y2)  
x 1+- ( 2Y(Q2 + Y 2 )  

(y2 - Q2){1 + exp( - y )  cos Q} - Q exp( - y )  sin Q(2y + 1) 

+ y{exp( - y )  cos Q - l} + 
Q2 + y2 

)I. (10) 
2 exp( - y)(y(cos Q - expy)(y2 - 3Q2) + Q sin Q(Q2 - 3y2) )  

( Q2 + y2)2 
+ 

In  order to use the above-mentioned formulae, derived by Pefina and Horlk (1969), 
for the integrated intensity distribution, the photon-counting distribution and its 
factorial moments, as approximate formulae for light having the statistical properties 
of the superposition of coherent and chaotic fields of Lorentzian spectrum, we adjust 
the parameter M in such a way that the second factorial moment (2) coincides with 
the exact expression (8). This gives for M :  

\'- / 

where N is given by (9). 
Another approximation can be obtained by using the corresponding formulae 

with x = l(Q = 0)  first derived in Pefina (1967, 1968 a,b), for example, for the 
factorial moments we have 

The  parameter M' can be obtained from (11) as 

M' = N <E )-2( (%XI >2 + (nCh > (no >)* 
This approximation has an advantage in such cases where x is not known and cannot 
be estimated at least approximately. 
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3. Discussion of results 
One can find from (11) that M --f 1 for y --f 0 (cf. figure 4). This limit provides 

the corresponding formulae for the superposition of narrow-band chaotic light and 
one-mode coherent light (Jakeman and Pike 1969, Pefina and Horik 1969). 

The  reduced second factorial moment (W2) / (W)2-  1 for ( n c )  : (nCh) = 18:2 
( ( n c )  + (nCh) = 20) as a function of y and l2 is demonstrated by the surface shown 
in figure 1. 
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The surface representing the reduced second factorial 
of y and fi for <no> : < % h >  = 18 : 2 calculated on 

equation (8). 

moment as a 
the basis of 

I n  figure 2 one can see the reduced third factorial moment plotted against y for 
various ratios ( n c )  : (nCh) and for i2 = 0 and 100. The  full curves are obtained on 
the basis of the exact expression (10) while the dotted curves are obtained on the basis 
of the approximate expression (3) with M given by (11). It may be seen that the 
agreement is very good. Such a good agreement occurs for all values of the parameters 
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involved. In  general the accuracy of approximation increases with increasing (no>. 
Nearly the same accuracy was obtained for the approximation using the formulae 
with x = 1 and M’. The significance of the approximate formulae lies in the fact 
that the exact formulae are not obtainable in general in a close form because of 
mathematical difficulties. The  curves in figure 2 represent cut curves of the correspond- 
ing surface ( W 3 ) / ( W ) 3  - 1 as a function of y and a, which is of similar character 
to the surface shown in figure 1. The  reduced second and third factorial moments as 
functions of y for a parameter R = (wc-  wo)/F  = 100 (a = Ry)  and ( n o )  : 
(nCh) = 18 : 2 are shown in figure 3. These curves represent cut curves of the 

corresponding surfaces with the plane = 100y. The  curve for the reduced second 
factorial moment is identical to the corresponding curve in figure l ( a )  of the paper by 
Jakeman and Pike (1969). Note that the curves for R = 0 coincide with the curves 
for C l  = 0. 

Good accuracy of the approximate formulae over all regions of the parameters 
involved provides a way of determining the halfwidth and mean frequency of the 
spectrum of Gaussian-Lorentzian light. I n  comparison with the exact method 
proposed by Jakeman and Pike (1969), who used two measurements of the second 
factorial moment for two detection times T I  and T2,  this method is approximate but 
it provides simply the spectral parameters in a close form. As was pointed out by the 
referee, error of the third factorial moment in the region y N 1 for purely chaotic 
light is about 5 %  which would give an error of 15% in the linewidth. So the accuracy 
of the present method may be less than is suggested by the figures of the third factorial 
moment, as a consequence of a complicated function dependence. However, the 
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presence of the coherent component leads to an increase of the accuracy in the third 
factorial moment. For example, for SZ = 1 in the region y N 1 we obtain the error 
practically 0% for ( n o )  : (rich) = 18 : 2, 0*20/:, for 16 : 4, 1.3% for 12 : 8, 2.1% 
for 10 : 10, 5.1% for 4 : 16 and 6*7”/0 for 0 : 20 ( ( n o ) +  (nCh)  = 20). A similar 
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Figure 4. The functions M(y),  M’(y) are shown by the full and dotted curves 
respectively for (a) = 0 and (b) L2 = 100. The curves A, B, C and D cor- 
respond to (no) : (nob) = 18 : 2 ,  16 : 4, 10 : 10 and 0 : 20 respectively 
( <nc) + (rich) = 20). In the case a = 0 as well as (no) = 0 the functions 

M(y) and W ( y )  are identical. 
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situation occurs for all other values of s1. This leads to an increase of the accuracy in 
determining the spectral parameters. Although it is difficult to give an estimate of this 
accuracy, which will depend on the position of a point on the surface representing the 
third factorial moment as a function of y and Q, it may be said that the resulting error 
{(Ay)2+(As1)2}112, where Ay and As1 are errors in y and s1 respectively, will be 
proportional to the error in the third factorial moment so that these two errors Ay and 
A Q  mill be generally less than the resulting error. 

Solving the system of equations (2) and (3) for M and x we arrive at 

From the curve x = sin( Q/Z)/( G/Z) one can determine 0, and from the curves given 
in figure 4-demonstrating dependence of M(iM’> on y-one can determine I’ for 
M obtained from( 13). Since w c  and T are fixed, we have the equation( w c  - w o ) T  = s1 
for the mean frequency w,,. The moments (W’} and ( W 3 )  in (13) and (14) may 
be determined with the help of a photon-counting measurement. 

We have limited our considerations to the one-mode coherent field. If more than 
one coherent frequency is present in the field, generalization is straightforward (cf. 
Pefina and Horhk 1969). Only determination of x may happen to be more complicated. 
However, having two free parameters M and x in the equations in this case the above 
given formulae may be used for another approximation in which iW and x are adjusted 
(by means of (13) and (14)) in such a way that the values of the second and the third 
factorial moments are exact. 

Although the present analysis is limited by the assumption of a Lorentzian profile 
of Gaussian light, the analysis by BCdard et al. (1967), performed for Gaussian light 
of various spectral profiles, justifies our expectation of good accuracy of the approxi- 
mate formulae for other profiles of the spectrum. 

The  results of this paper can also be used if for example the parameters ( n c )  and 
wc are modulated in a certain way. This case as well as a generalization to partially 
polarized light, including multiphoton absorption, will be dealt with in a forthcoming 
paper. 
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